Oxidation of 3-Acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole with \boldsymbol{m}-Chloroperbenzoic Acid and Nucleophilic Substitution of the Oxidation Product, 3-Acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole. XRay Molecular Structure of (2S*)-3-Acetyl-5-[($\left.R^{*}\right)$-methylsulphinyl]-2-phenyl-2,3-dihydro-1,3,4-thiadiazole and of (1R*,2S*)-3-Acetyl-5-[(S^{*})-methylsulphinyl]-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-Oxide

Seiju Kubota, * Kouhei Toyooka, and Masayuki Shibuya
Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi, Tokushima 770, Japan Zenei Taira
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

Abstract

3-Acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (1) was oxidized to 3-acetyl-5-methyl-sulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxide (9) with m-chloroperbenzoic acid by way of diastereoisomeric mixtures of 3-acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazoles (7a) and (7b) and 3-acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxides (8a) and (8 b). The relative stereochemistry of compounds ($7 a$) and (8 b) was established by X-ray crystallographic analysis. 5-Substituted 3-acetyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazoles were synthesized by substitution of the methylsulphinyl groups of compounds (7a) and (7b) with several nucleophiles.

In our previous papers, we reported that the oxidation of 3-acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (1) with potassium permanganate gave 2 -methylsulphonyl-5-phenyl-1,3,4-thiadiazole (2) and 3-acetyl-5-methylsulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1,1 -dioxide (3), ${ }^{1}$ and that the oxidation of 3 -acetyl-5-methylthio-2-(4-pyridyl)-2,3-di-hydro-1,3,4-thiadiazole (4) with 30% hydrogen peroxide in acetic acid gave an inseparable diastereoisomeric mixture of 3-acetyl-5-methylsulphinyl-2-(4-pyridyl)-2,3-dihydro-1,3,4-thiadiazoles (5) along with 2-methylsulphinyl-5-(4-pyridyl)-1,3,4thiadiazole (6). ${ }^{2}$
There are only a few reports on the synthesis of the diastereoisomers of 2,3 -dihydro-1,3,4-thiadiazole derivatives. The cycloaddition reaction of sulphines (thione S-oxides) with diphenylnitrilimine ($\mathrm{Ph} \stackrel{+}{\mathrm{C}}=\mathrm{N}-\stackrel{\mathrm{N}}{\mathrm{N}}$) provided an inseparable diastereoisomeric mixture of the 2,3-dihydro-1,3,4-thiadiazole 1oxides, or one strongly dominating isomer which is thermodynamically the more stable. ${ }^{3.4}$

Here we report the synthesis of diastereoisomers of 3-acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-
thiadiazoles (7a and b) and of 3-acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxides ($8 \mathbf{a}$ and \mathbf{b}), and the synthesis of 5 -substituted 3 -acetyl-2-phenyl-2,3-dihydro-$1,3,4$-thiadiazoles by nucleophilic substitution of the methylsulphinyl group of compounds (7a) and (7b).
The oxidation of compound (1) with m-chloroperbenzoic acid (MCPBA) (3 mol equiv.) at room temperature gave 3-acetyl-5-methylsulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxide (9), which was identical with the product obtained by oxidation of 3-acetyl-5-methylsulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole with MCPBA. ${ }^{1}$ The oxygen atom of the sulphoxide group of compound (9) was assigned as being trans to the phenyl group, since oxidation with MCPBA usually provides the isomer in which oxygen is bonded to the least hindered side of the sulphur. ${ }^{5} 7$

In the conversion of sulphides (1) into sulphone (9), several intermediates were observed by t.l.c. (Scheme). In order to clarify the reaction pathway, all intermediates were isolated by

(1)

(3)

(5)

(2)

(4)

(6)
the use of different reaction conditions. Oxidation of compound (1) with MCPBA (1 mol equiv.) in chloroform at room temperature for 2 h gave compound (7a) (55%), m.p. $80-83^{\circ} \mathrm{C}$, and compound (7b) (35%), m.p. $127-129^{\circ} \mathrm{C}$. Both compounds (7a) and (7b) were shown to be diastereoisomers of 3-acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazoles on the basis of their spectral data. The elemental analyses of both compounds agreed with the molecular formula $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$. The mass spectra of sulphoxides (7a) and (7b) showed the same

Scheme. Reagents: i, MCPBA (1 mol equiv.); ii, MCPBA (3 mol equiv.); iii, $\mathrm{Et}_{3} \mathrm{~N}$-ethanol

Figure 1. The molecular structure of compound (7a) (molecule A) showing the crystallographic numbering scheme

Figure 2. The molecular structure of compound (8b) showing the crystallographic numbering scheme
molecular-ion peak at $m / z 268$ and fragment-ion peaks at m / z $252\left(M^{+}-\mathrm{O}\right)$ and $m / z 163\left[\left(M^{+}+1\right)-\mathrm{COCH}_{3}-\right.$ SOCH_{3}]. Compounds (7a) and (7b) showed i.r. absorption, due
to a 5-methylsulphinyl group, at 1055 and $1070 \mathrm{~cm}^{-1}$, a ${ }^{1} \mathrm{H}$ n.m.r. signal for 5 -methylsulphinyl protons at $\delta_{\mathrm{H}} 2.90$ and 2.95 (each singlet) and for $2-\mathrm{H}$ protons at $\delta_{\mathrm{H}} 7.08$ and 7.07 , and a ${ }^{13} \mathrm{C}$ n.m.r. signal due to $s p^{3}$-hybridized $\mathrm{C}-2$ at $\delta_{\mathrm{c}} 69.72$ and 70.42 , respectively. The detailed structure of compound (7a) which has an (R^{*})-methylsulphinyl group was established by single-crystal X-ray analysis.

Oxidation of compound (7a) with MCPBA (1 mol equiv.) in chloroform at room temperature for 16 h gave 3 -acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1oxide (8a) (31%) as crystals, m.p. $155-158{ }^{\circ} \mathrm{C}$. The structure of compound (8a) was assigned from the following spectral data. The chemical ionization mass spectrum (c.i.m.s.) showed a weak peak at $m / z 302\left(M+\mathrm{NH}_{4}\right)^{+}$and a strong peak at $m / z 225$ $\left[\left(M^{+}+1\right)-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$. The i.r. spectrum showed two strong absorptions at 1070 and $1060 \mathrm{~cm}^{-1}$ due to SO groups. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ n.m.r. spectra indicated the presence of an $s p^{3}$ hybridized $\mathrm{C}-2\left(\delta_{\mathrm{C}} 85.90\right)$ and a 2 -methine proton ($\delta_{\mathrm{H}} 6.77$), respectively.

Oxidation of compound (7b) with MCPBA (1 mol equiv.) in chloroform at room temperature for 24 h gave a single product, 3-acetyl-5-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxide (8 b) $\left(76 \%\right.$), as crystals, m.p. $133-135^{\circ} \mathrm{C}$. The structure of compound ($\mathbf{8 b}$) was determined by the following spectral data and X-ray structure analysis. The c.i.m.s. showed a weak peak at $m / z 302\left(M+\mathrm{NH}_{4}\right)^{+}$and a strong peak at m / z 225 as for compound (8a). The i.r. spectrum showed SO absorption at 1070 and $1055 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed a signal for 5 -methylsulphinyl protons at $\delta_{\mathrm{H}} 3.17$ and a signal for $2-\mathrm{H}$ at $\delta_{\mathrm{H}} 6.64$. The ${ }^{13} \mathrm{C}$ n.m.r. spectrum indicated an $s p^{3}$-hybridized C-2 at $\delta_{\mathrm{C}} 85.99$. From these spectral data, compounds (8a) and (8b) were shown to be diastereoisomeric. The detailed structure of compound ($\mathbf{8 b}$), which has an (S^{*})methylsulphinyl group, was established by single-crystal X-ray analysis. The molecular structures of compounds (7a) and (8b) are illustrated in Figures 1 and 2.

Oxidation of compounds (8a) and (8b) with MCPBA (1.1 mol equiv.) in chloroform at room temperature for 24 h gave the same product, viz. 3-acetyl-5-methylsulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxide (9). ${ }^{1}$ Previously, we have reported that treatment of 3-acetyl-5-methylsulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxide (9) with triethylamine in ethanol gave 2-methylsulphonyl-5-phenyl-1,3,4-thiadiazole (10). ${ }^{1}$ Similarly, both compounds (8a) and (8b) with triethylamine gave compound (10) in almost quantitative yield. Formation of compounds (9) and (10) from both compounds (8a) and (8b) also supports the facts that compound (8a) is the diastereoisomer of compound (8b) and that the S-oxide (9) has the trans configuration discussed above.

From these results, it was concluded that compound (1) was oxidized to compound (9) by way of the diastereoisomeric intermediates (7a),(7b) and (8a),(8b), successively.

The nucleophilic substitution reaction at $\mathrm{C}-5$ of compounds (7a) and (7b) was examined in relation to potential synthesis of 5 -substituted 3 -acetyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazoles, since the sulphinyl group is known to be a good leaving group. ${ }^{8}$

(11) $R=H$
(12) $R=O E t$
(13) $\mathrm{R}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$
(14) $R=S P h$

Table 1. Fractional atomic co-ordinates for compound (7a) with e.s.d.s in parentheses
(a) Molecule A

Atom	x	y	z
$\mathrm{~S}(1)$	$0.5348(1)$	$0.1489(1)$	$0.5854(0)$
$\mathrm{C}(2)$	$0.4762(3)$	$0.2601(2)$	$0.5626(1)$
$\mathrm{N}(3)$	$0.4783(2)$	$0.2390(2)$	$0.5215(1)$
$\mathrm{N}(4)$	$0.5481(2)$	$0.1616(2)$	$0.5116(1)$
$\mathrm{C}(5)$	$0.5846(3)$	$0.1144(2)$	$0.5413(1)$
$\mathrm{C}(6)$	$0.5580(3)$	$0.3434(2)$	$0.5752(1)$
$\mathrm{C}(7)$	$0.5209(4)$	$0.4015(2)$	$0.6037(1)$
$\mathrm{C}(8)$	$0.5973(5)$	$0.4800(2)$	$0.6152(1)$
$\mathrm{C}(9)$	$0.7079(5)$	$0.4981(3)$	$0.5987(1)$
$\mathrm{C}(10)$	$0.7463(4)$	$0.4398(3)$	$0.5705(1)$
$\mathrm{C}(11)$	$0.6713(4)$	$0.3630(2)$	$0.5592(1)$
$\mathrm{C}(12)$	$0.4056(3)$	$0.2915(2)$	$0.4947(1)$
$\mathrm{C}(13)$	$0.4133(4)$	$0.2655(2)$	$0.4537(1)$
$\mathrm{O}(14)$	$0.3418(2)$	$0.3553(2)$	$0.5053(1)$
$\mathrm{S}(15)$	$0.6728(1)$	$0.0068(1)$	$0.5385(0)$
$\mathrm{O}(16)$	$0.6569(3)$	$-0.0417(2)$	$0.5753(1)$
$\mathrm{C}(17)$	$0.8276(3)$	$0.0600(2)$	$0.5436(1)$

(b) Molecule B

Atoms	x	y	z
$\mathrm{~S}(1)$	$0.1716(1)$	$0.5315(1)$	$0.1865(0)$
$\mathrm{C}(2)$	$0.1909(3)$	$0.6440(2)$	$0.1620(1)$
$\mathrm{N}(3)$	$0.3070(2)$	$0.6826(2)$	$0.1826(1)$
$\mathrm{N}(4)$	$0.3412(3)$	$0.6474(2)$	$0.2189(1)$
$\mathrm{C}(5)$	$0.2762(3)$	$0.5733(2)$	$0.2237(1)$
$\mathrm{C}(6)$	$0.0750(3)$	$0.7049(2)$	$0.1633(1)$
$\mathrm{C}(7)$	$-0.0249(3)$	$0.6942(2)$	$0.1348(1)$
$\mathrm{C}(8)$	$-0.1340(4)$	$0.7473(3)$	$0.1354(1)$
$\mathrm{C}(9)$	$-0.1455(4)$	$0.8114(3)$	$0.1640(1)$
$\mathrm{C}(10)$	$-0.0469(4)$	$0.8217(3)$	$0.1923(1)$
$\mathrm{C}(11)$	$0.0636(3)$	$0.7690(2)$	$0.1923(1)$
$\mathrm{C}(12)$	$0.3700(3)$	$0.7577(2)$	$0.1686(1)$
$\mathrm{C}(13)$	$0.4826(4)$	$0.7951(3)$	$0.1929(1)$
$\mathrm{O}(14)$	$0.3323(3)$	$0.7878(2)$	$0.1371(1)$
$\mathrm{S}(15)$	$0.2978(1)$	$0.5073(1)$	$0.2673(0)$
$\mathrm{O}(16)$	$0.2406(4)$	$0.4140(2)$	$0.2575(1)$
$\mathrm{C}(17)$	$0.1772(6)$	$0.5686(4)$	$0.2909(1)$

Reaction of a diastereoisomeric mixture (7a) and (7b) with sodium borohydride at room temperature for 2 h led to the smooth reductive elimination of the methylsulphinyl group to give 3-acetyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (11) (78\%). The reaction of the mixture of compounds (7a) and (7b) with sodium ethoxide in ethanol at $0^{\circ} \mathrm{C}$ for 0.5 h gave 3-acetyl5 -ethoxy-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (12) (70\%). Reaction of the mixture of sulphoxides (7a) and (7b) with diethyl malonate in the presence of sodium hydride at room temperature for 2 h afforded diethyl (4-acetyl-5-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)malonate (13) (59%). Reaction of the mixture of compounds (7a) and (7b) with thiophenol in the presence of sodium hydride at $0^{\circ} \mathrm{C}$ for 10 min afforded 3-acetyl-2-phenyl-5-phenylthio-2,3-dihydro-1,3,4-thiadiazole (14) (86\%).

X-Ray Crystal Structures of Compounds (7a) and (8b).—The atomic co-ordinates, bond lengths, bond angles, and torsion angles of the non-hydrogen atoms of compounds (7a) and (8b) are listed in Tables 1-5. Compound (7a) contains two molecules in the asymmetric unit. The two independent molecules (A and B) have similar geometries (Tables 1, 2, and 5) and the conformation of molecule \mathbf{A} is shown in Figure 1.

The configurations of compounds (7a) and ($\mathbf{8 b}$) are different at the methylsulphinyl moiety, $\mathrm{S}(15)-\mathrm{O}(16)$. Compound (7a) has an (R^{*})-methylsulphinyl group while compound (8b) has an

Table 2. Bond lengths (\AA) and angles (${ }^{\circ}$) for compound (7a) with e.s.d.s in parentheses
(a) Bond lengths (\AA)

	Molecule A	Molecule B
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.846(3)$	$1.831(3)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.746(4)$	$1.728(3)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$1.473(5)$	$1.462(4)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.501(4)$	$1.493(4)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.380(4)$	$1.382(5)$
$\mathrm{N}(3)-\mathrm{C}(12)$	$1.372(4)$	$1.367(4)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$1.266(5)$	$1.271(4)$
$\mathrm{C}(5)-\mathrm{S}(15)$	$1.790(3)$	$1.788(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.378(5)$	$1.386(5)$
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.386(5)$	$1.376(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.407(5)$	$1.370(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.366(7)$	$1.366(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.376(6)$	$1.372(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.379(5)$	$1.377(5)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.492(5)$	$1.487(5)$
$\mathrm{C}(12)-\mathrm{O}(14)$	$1.203(4)$	$1.215(5)$
$\mathrm{S}(15)-\mathrm{O}(16)$	$1.484(3)$	$1.479(3)$
$\mathrm{S}(15)-\mathrm{C}(17)$	$1.782(3)$	$1.796(6)$

(b) Bond angles (${ }^{\circ}$)

	Molecule A	Molecule B
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	$88.3(1)$	$88.0(2)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$102.4(2)$	$102.5(2)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$112.7(2)$	$111.3(2)$
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$112.8(3)$	$114.2(3)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	$117.6(3)$	$116.9(3)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(12)$	$120.1(3)$	$121.4(3)$
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(12)$	$122.2(3)$	$121.2(3)$
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$109.9(3)$	$108.9(3)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{N}(4)$	$119.2(2)$	$119.6(3)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{S}(15)$	$119.0(2)$	$119.1(2)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(15)$	$121.5(3)$	$121.2(3)$
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.5(3)$	$118.4(3)$
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(11)$	$121.7(3)$	$122.0(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$118.9(3)$	$119.5(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.3(4)$	$120.3(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.6(3)$	$120.4(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.4(4)$	$119.3(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.9(4)$	$121.2(4)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$121.9(3)$	$119.2(3)$
$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	$116.7(3)$	$117.1(3)$
$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{O}(14)$	$119.0(3)$	$118.2(3)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(14)$	$124.3(3)$	$124.7(3)$
$\mathrm{C}(5)-\mathrm{S}(15)-\mathrm{O}(16)$	$104.3(2)$	$104.6(2)$
$\mathrm{C}(5)-\mathrm{S}(15)-\mathrm{C}(17)$	$95.9(2)$	$95.8(2)$
$\mathrm{O}(16)-\mathrm{S}(15)-\mathrm{C}(17)$	$106.4(2)$	$104.6(3)$

$\left(S^{*}\right)$-methylsulphinyl group as shown in Figure 3. Their geometries are very similar to each other except at the sulphinyl group. The thiadiazoline \dagger rings adopt a half-chair form, in which puckering is apparent at the $\mathbf{C}(2)$ atoms with displacements of -0.101 and $0.126 \AA$ respectively for molecules A and B of compound (7a), and of $-0.146 \AA$ for compound ($\mathbf{8 b}$). In compound (8b), the oxygen atom attached to $S(1)$ lies on the opposite side of the thiadiazoline ring in relation to the phenyl group.

The acetylhydrazino moieties $\mathrm{C}(13)-\mathrm{O}(14)-\mathrm{C}(12)-\mathrm{N}(3)-$ $\mathrm{N}(4)-\mathrm{C}(2)$ are nearly planar in compounds (7a) and (8b). Their displacements from their mean planes vary from -0.025 to $0.027 \AA$ [molecule A of (7a)], -0.021 to $0.044 \AA$ [molecule B of (7a)], and -0.032 to $0.029 \AA$ [compound (8b)].

[^0]Table 3. Fractional atomic co-ordinates for compound (8b) with e.s.d.s in parentheses

Atom	x	y	z
$\mathrm{~S}(1)$	$0.5480(0)$	$0.8018(0)$	$0.5656(1)$
$\mathrm{C}(2)$	$0.6259(1)$	$0.8212(1)$	$0.7238(4)$
$\mathrm{N}(3)$	$0.5884(1)$	$0.8647(1)$	$0.8529(3)$
$\mathrm{N}(4)$	$0.5225(1)$	$0.8978(1)$	$0.8015(3)$
$\mathrm{C}(5)$	$0.4989(2)$	$0.8773(1)$	$0.6553(4)$
$\mathrm{C}(6)$	$0.6928(2)$	$0.8561(1)$	$0.6329(4)$
$\mathrm{C}(7)$	$0.7533(2)$	$0.8163(2)$	$0.5690(5)$
$\mathrm{C}(8)$	$0.8153(2)$	$0.8471(2)$	$0.4832(6)$
$\mathrm{C}(9)$	$0.8166(2)$	$0.9175(2)$	$0.4583(5)$
$\mathrm{C}(10)$	$0.7568(2)$	$0.9565(2)$	$0.5226(6)$
$\mathrm{C}(11)$	$0.6950(2)$	$0.9268(2)$	$0.6096(5)$
$\mathrm{C}(12)$	$0.6173(2)$	$0.8721(1)$	$1.0185(4)$
$\mathrm{C}(13)$	$0.5766(2)$	$0.9206(2)$	$1.1375(4)$
$\mathrm{O}(14)$	$0.6746(1)$	$0.8392(1)$	$1.0582(3)$
$\mathrm{S}(15)$	$0.4158(0)$	$0.9195(0)$	$0.5613(1)$
$\mathrm{O}(16)$	$0.4399(1)$	$0.9483(1)$	$0.3938(3)$
$\mathrm{C}(17)$	$0.3624(2)$	$0.8431(2)$	$0.5122(7)$
$\mathrm{O}(18)$	$0.5014(1)$	$0.7423(1)$	$0.6284(4)$

Table 4. Bond lengths (\AA) and angles (') for compound ($\mathbf{8 b}$) with e.s.d.s in parentheses
(a) Bond lengths (\AA)

$\mathrm{S}(1)-\mathrm{C}(2)$	$1.848(3)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.824(3)$
$\mathrm{S}(1) \mathrm{O}(18)$	$1.484(2)$
$\mathrm{C}(2) \mathrm{N}(3)$	$1.45(3)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.506(4)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.359(3)$
$\mathrm{N}(3)-\mathrm{C}(12)$	$1.379(4)$
$\mathrm{N}(4)-\mathrm{C}(5)$	$1.263(4)$
$\mathrm{C}(5)-\mathrm{S}(15)$	$1.795(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.382(4)$

(b) Bond angles ()

$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	$85.4(1)$	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(11)$	$121.8(2)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{O}(18)$	$109.3(1)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$119.0(3)$
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(18)$	$104.5(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.4(3)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$104.6(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.3(3)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$109.5(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.0(3)$
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$113.3(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.4(3)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	$116.1(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	$119.8(3)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(12)$	$122.5(2)$	$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.0(2)$
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(12)$	$121.4(2)$	$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{O}(14)$	$118.1(3)$
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$112.3(2)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{O}(14)$	$123.9(3)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{N}(4)$	$116.3(2)$	$\mathrm{C}(1)-\mathrm{S}(15)-\mathrm{O}(16)$	$107.8(1)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{S}(15)$	$125.3(2)$	$\mathrm{C}(5)-\mathrm{S}(15)-\mathrm{C}(17)$	$96.6(2)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(15)$	$118.2(2)$	$\mathrm{O}(16)-\mathrm{S}(15)-\mathrm{C}(17)$	$105.9(2)$
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.2(2)$		

As shown in Tables 2 and 4, the lengths of the $\mathrm{N}(3)-\mathrm{C}(12)$ bond are similar to that of a peptide bond and the bond angles around the $\mathrm{N}(3)$ atoms are close to 120° for $s p^{2}$ hybridization. The $\mathrm{C}(5)$ atoms deviate from the planes of the acetylhydrazino moieties by $0.266,0.165$, and $0.212 \AA$ for molecules A and B of compound (7a) and for compound (8b), respectively. The endocyclic bond angles around the $\mathrm{N}(4)$ atoms are close to the normal tetrahedral value.

Experimental

M.p.s were determined by the capillary method and are uncorrected. I.r. spectra were recorded on a Hitachi 215

(7a)

(8b)

Figure 3. Configurations of the methylsulphinyl group of compounds (7a) and (8b) showing the torsion angles

Table 5. Torsion angles (${ }^{\circ}$) in molecules A and B of compound (7a) and in compound (8b)

	(7a)-A	(7a)-B	(8b)
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	13.6	16.8	19.7
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	-107.9	-105.7	-102.0
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{N}(4)$	-11.5	-12.7	-17.9
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{S}(15)$	174.6	171.0	167.5
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	-16.0	-20.9	-21.4
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(12)$	159.7	166.8	158.3
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)$	105.5	99.7	97.7
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(12)$	-78.9	-72.7	-82.5
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	-98.0	-87.3	-92.1
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(11)$	81.2	91.1	87.1
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	146.6	157.2	151.6
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(11)$	-34.2	-24.5	-29.2
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	9.0	13.2	9.2
$\mathrm{C}(12)-\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	-166.5	-174.4	-170.5
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	180.0	176.4	177.0
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{O}(14)$	0.9	-5.1	-2.4
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	-4.6	4.4	-3.3
$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{O}(14)$	176.3	-177.1	177.3
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	3.9	2.5	8.8
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(15)$	177.7	178.7	-176.1
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{S}(15)-\mathrm{O}(16)$	13.0	14.2	-64.3
S(1)-C(5)-S(15)-C(17)	-95.7	-92.6	44.7
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(15)-\mathrm{O}(16)$	-160.8	-162.1	121.1
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(15)-\mathrm{C}(17)$	90.5	91.1	-129.9
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-179.5	178.6	179.4
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	179.6	-178.6	-178.8
$\mathrm{O}(18)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$			-84.0
$\mathrm{O}(18)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(6)$			154.2
$\mathrm{O}(18)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{N}(4)$			90.9
$\mathrm{O}(18)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{S}(15)$			-83.8

spectrometer. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded on a JEOL-100 spectrometer using tetramethylsilane as internal standard, and ${ }^{13} \mathrm{C}$ n.m.r. spectra on a JEOL FX- 200 spectrometer. Mass spectra were measured with a JEOL D-300 instrument. For column chromatography, a $1: 1$ mixture of Merck Kieselgel (70-230 mesh) and Mallinckrodt silicic acid (100 mesh) was employed. Oxidation reactions were carried out under argon.

Oxidation of 3-Acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (1) with MCPBA.-Method A. A solution of 85% MCPBA ($1.21 \mathrm{~g}, 5.96 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ was added dropwise to a stirred solution of 3-acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (1) ($500 \mathrm{mg}, 1.98 \mathrm{mmol}$) in CHCl_{3} (4 ml) at room temperature. After being stirred at room temperature for 1 h , the mixture was neutralized with 5% aqueous sodium hydrogen carbonate and was then extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed with brine, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent by evaporation, the residue was crystallized from ethanol to give crystals of ($1 R^{*}, 2 S^{*}$)-3-acetyl-5-methyl-sulphonyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1 -oxide (9) ($553 \mathrm{mg}, 93 \%$), m.p. $136-138^{\circ} \mathrm{C}$ (lit., ${ }^{1} 136-138^{\circ} \mathrm{C}$)

Method B. A solution of 80% MCPBA ($428 \mathrm{mg}, 1.98$ mmol) in $\mathrm{CHCl}_{3}(16 \mathrm{ml})$ was added dropwise to an ice-cooled stirred solution of 3-acetyl-5-methylthio-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (1) $\left(500 \mathrm{mg}, 1.98 \mathrm{mmol}\right.$) in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$. After being stirred at room temperature for 2 h , the mixture was neutralized with 5% aqueous sodium hydrogen carbonate and was then extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed with brine and dried (anhydrous $\mathrm{Na}_{2^{-}}$ SO_{4}). After removal of the solvent by evaporation, the residue was chromatographed on silica gel with CHCl_{3}-acetone ($50: 1$) as eluant to give the starting material (1) (36 mg), and ($2 S^{*}$)-3-acetyl-5-[($\left.\mathrm{R}^{*}\right)$-methylsulphinyl $]$-2-phenyl-2,3-dihydro-
1,3,4-thiadiazole (7a) ($292 \mathrm{mg}, 55 \%$), m.p. $80-83^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 49.4; H, 4.5; N, 10.7. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 49.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 10.4 \%$); $\mathrm{v}_{\text {max. }} .(\mathrm{KBr}) 1675(\mathrm{C}=\mathrm{O})$ and $1055 \mathrm{~cm}^{-1}$ (SOMe); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.90(3 \mathrm{H}$, $\mathrm{s}, \mathrm{SOMe}), 7.08(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and $7.16-7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 21.98$ (COMe), 41.17 (SOMe), 69.72 (C-2), $125.44-140.56$ (Ar), $159.45(\mathrm{C}-5)$, and $168.83(\mathrm{C}=\mathrm{O})$) $m / z 268$ $\left(M^{+}\right) 252\left(M^{+}-\mathrm{O}\right)$, and $163\left[\left(M^{+}+1\right)-\mathrm{COCH}_{3}-\right.$ $\left.\mathrm{SOCH}_{3}\right]$, and $\left(2 S^{*}\right)$-3-acetyl-5-[(S*)-methylsulphinyl $]$-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (7b) ($185 \mathrm{mg}, 35 \%$), m.p. $127-129^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 49.2; H, 4.4; N, 10.1\%); $v_{\text {max }}(\mathrm{KBr}) 1665(\mathrm{C}=\mathrm{O})$ and $1070 \mathrm{~cm}^{-1}(\mathrm{SOMe}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 2.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SOMe}$), 7.07 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), and 7.31 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 22.04$ (COMe), 40.29 (SOMe), 70.42 (C-2), 125.46-140.39 (Ar), 159.54 (C-5), and 168.83 $(\mathrm{C}=\mathrm{O}) ; m / z 268\left(M^{+}\right), 252\left(M^{+}-\mathrm{O}\right)$, and $163\left[\left(M^{+}+1\right)\right.$ $-\mathrm{COCH}_{3}-\mathrm{SOCH}_{3}$].
(1R*,2S*)-3-Acetyl-5-[(R*)-methylsulphinyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-Oxide (8a).-A solution of 85% MCPBA ($69 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(8 \mathrm{ml})$ was added dropwise to an ice-cooled stirred solution of the 2,3-dihydro-1,3,4-thiadiazole (7 a) ($90 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(4 \mathrm{ml})$. After being stirred at room temperature for 16 h , the mixture was neutralized with 5% aqueous sodium hydrogen carbonate and was then extracted with $\mathrm{CHCl}_{3}(3 \times 70 \mathrm{ml})$. The combined extracts were washed with brine, and dried (anhydrous $\mathrm{Na}_{2}{ }^{-}$ SO_{4}). After removal of the solvent by evaporation, the residue was chromatographed on silica gel with CHCl_{3}-acetone ($50: 1$) as eluant to give the starting material (7a) (28 mg) and a solid which was crystallized from ethanol to give compound (8a) (30 $\mathrm{mg}, 31 \%$), m.p. $155-158{ }^{\circ} \mathrm{C}$ (Found: C, 46.5 ; H, 4.15 ; N, 9.55. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, 46.5; $\mathrm{H}, 4.25 ; \mathrm{N}, 9.85 \%$); $\mathrm{v}_{\text {max. }}$. KBr) $1710(\mathrm{C}=\mathrm{O}), 1070$, and $1060 \mathrm{~cm}^{-1}(\mathrm{SOMe}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.57(3$ $\mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SOMe}$), 6.77 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $7.03-7.21$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), and 7.33-7.51 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ 21.75 (COMe), 40.99 (SOMe), 85.90 (C-2), 126.14-129.49 (Ar), $160.42(\mathrm{C}-5)$, and $169.03(\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{NH}_{3}\right.$; c.i.m.s.) $302\left(M^{+}+\right.$ $1)$ and $225\left[\left(M^{+}+1\right)-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$.
(1R*,2S*)-3-Acetyl-5-[(S*)-methylsulphinyl]-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-Oxide (8b).-A solution of 80%

MCPBA ($205 \mathrm{mg}, 0.95 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$ was added dropwise to an ice-cooled stirred solution of the 2,3-dihydro-1,3,4-thiadiazole (7 b) ($250 \mathrm{mg}, 0.93 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$. After being stirred at room temperature for 24 h , the mixture was neutralized with 5% aqueous sodium hydrogen carbonate and was then extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed with brine and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent by evaporation, the residue was chromatographed on silica gel with $\mathrm{CHCl}_{3}-$ acetone ($50: 1$) as eluant to give a solid which was crystallized from ethanol to give compound ($8 \mathbf{8 b}$) ($202 \mathrm{mg}, 76 \%$), m.p. $133-$ $135^{\circ} \mathrm{C}$ (Found: C, 46.2; H, 4.1; N, 9.55\%); $v_{\text {max. }}$ (KBr) 1695 $(\mathrm{C}=\mathrm{O}), 1070$, and $1055 \mathrm{~cm}^{-1}(\mathrm{SOMe}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.54(3 \mathrm{H}, \mathrm{s}$, COMe), 3.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SOMe}$), 6.64 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $6.99-7.20$ (2 H , $\mathrm{m}, \mathrm{ArH})$, and $7.25-7.48(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 21.84$ (COMe), 41.96 (SOMe), 85.99 (C-2), 126.31-129.52 (Ar), 159.31 (C-5), and $169.03(\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{NH}_{3}\right.$; c.i.m.s.) $302(M+$ $\left.\mathrm{NH}_{4}\right)^{+}$and $225\left[\left(M^{+}+1\right)-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$.

Oxidation of Compounds (8a) and (8b) with MCPBA.Method A. A solution of 80% MCPBA ($125 \mathrm{mg}, 0.58 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(8 \mathrm{ml})$ was added dropwise to a stirred solution of the $2,3-$ dihydro-1,3,4-thiadiazole 1 -oxide ($8 a$) ($150 \mathrm{mg}, 0.53 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ at room temperature. After being stirred at room temperature for 24 h , the mixture was neutralized with 5% aqueous sodium hydrogen carbonate and was then extracted with $\mathrm{CHCl}_{3}(3 \times 70 \mathrm{ml})$. The combined extracts were washed with brine, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent by evaporation, the residue was crystallized from ethanol to give compound (9) ($156 \mathrm{mg}, 98 \%$).

Method B. A solution of 80% MCPBA ($84 \mathrm{mg}, 0.39 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(7 \mathrm{ml})$ was added dropwise to a stirred solution of the 2,3-dihydro-1,3,4-thiadiazole 1 -oxide ($\mathbf{8 b}$) ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ at room temperature. Work-up as in method A gave crystals of compound (9) ($105 \mathrm{mg}, 99 \%$).

Conversion of Compounds (8a) and (8b) into 2-Methylsulphinyl5 -phenyl-1,3,4-thiadiazole (10).-Method A. A solution of triethylamine ($64 \mathrm{mg}, 0.63 \mathrm{mmol}$) in ethanol (2 ml) was added dropwise to a stirred suspension of compound (8a) ($\mathbf{9 0} \mathrm{mg}, 0.32$ mmol) in ethanol (6 ml) at room temperature. After the mixture had been stirred at room temperature for 15 min , the solvent was evaporated off under reduced pressure. The residue was crystallized from ethanol-ether to give 2-methylsulphinyl-5-phenyl-1,3,4-thiadiazole (10) ($65 \mathrm{mg}, 91 \%$), m.p. $110-111^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 48.4 ; \mathrm{H}, 3.4 ; \mathrm{N}, 12.6 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}_{2}$ requires $\mathrm{C}, 48.2 ; \mathrm{H}$, 3.6; N, 12.5%); $v_{\text {max. }} .(\mathrm{KBr}) 1050 \mathrm{~cm}^{-1}$ (SO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.14$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{SOMe}), 7.42-7.60(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.90-8.04(2 \mathrm{H}, \mathrm{m}$, ArH); $m / z 224$ (M^{+}).

Method B. A solution of triethylamine ($130 \mathrm{mg}, 1.28 \mathrm{mmol}$) in ethanol (2 ml) was added dropwise to a stirred suspension of compound (8 b) ($180 \mathrm{mg}, 0.63 \mathrm{mmol}$) in ethanol (10 ml). Workup as in method A gave crystals of compound (10) (136 mg, 96\%).

3-Acetyl-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (11).-A solution of the diastereoisomeric mixture of the 2,3-dihydro-1,3,4thiadiazoles ($7 \mathbf{a}$ and \mathbf{b}) $\dagger(500 \mathrm{mg}, 1.87 \mathrm{mmol})$ in tetrahydrofuran (THF) (4 ml) was added dropwise to an ice-cooled stirred solution of $\mathrm{NaBH}_{4}(78 \mathrm{mg}, 2.06 \mathrm{mmol})$ in THF (2 ml). After 1 h at room temperature, water (2 ml) was added to the reaction mixture, which was then extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed with brine, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent by evaporation, the residue was chromatographed on silica gel with CHCl_{3}-acetone ($50: 1$) as eluant to give a solid which was
\dagger The mixture was prepared by oxidation of the 2,3-dihydro-1,3,4-thiadiazole (1) with MCPBA and was purified by chromatography. The diastereoisomeric ratio of (7a) to (7b) was $c a .3: 2$.
crystallized from light petroleum (b.p. $30-70^{\circ} \mathrm{C}$)-ethanol to give compound (11) ($300 \mathrm{mg}, 78 \%$), m.p. $86-88^{\circ} \mathrm{C}$ (Found: C, 58.2; $\mathrm{H}, 4.8 ; \mathrm{N}, 13.65 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 58.2 ; \mathrm{H}, 4.9 ; \mathrm{N}$, 13.6%); $v_{\text {max. }}(\mathrm{KBr}) 1655 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.32(3 \mathrm{H}, \mathrm{s}$, COMe), $6.90(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.29(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$, and $7.36(1 \mathrm{H}, \mathrm{s}, 5-$ H); $m / z 206\left(M^{+}\right)$and $163\left(M^{+}-\mathrm{COCH}_{3}\right)$.

3-Acetyl-5-ethoxy-2-phenyl-2,3-dihydro-1,3,4-thiadiazole

 (12).-A solution of the diastereoisomeric mixture of compounds (7 a and b) $(200 \mathrm{mg}, 0.75 \mathrm{mmol}$) in ethanol (3 ml) was added dropwise to an ice-cooled stirred solution of sodium ethoxide ($102 \mathrm{mg}, 1.5 \mathrm{mmol}$) in ethanol (3 ml). After 30 min at $0^{\circ} \mathrm{C}$, the mixture was treated with water (2 ml) and was then neutralized with acetic acid and extracted with $\mathrm{CHCl}_{3}(3 \times 100$ ml). The combined extracts were washed with brine, and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After removal of the solvent by evaporation, the residue was chromatographed on silica gel with CHCl_{3}-acetone ($50: 1$) as eluant to give a solid which was crystallized from light petroleum to afford compound (12) (130 $\mathrm{mg}, 70 \%$), m.p. $86-88^{\circ} \mathrm{C}$ (Found: C, $57.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 10.9$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 57.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 11.2 \%$); $\mathrm{v}_{\text {max. }}$. KBr) $1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.24(3 \mathrm{H}$, $\mathrm{s}, \mathrm{COMe}), 4.36\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 7.07(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and 7.32 (5 $\mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z 250\left(M^{+}\right), 208\left[\left(M^{+}+1\right)-\mathrm{COCH}_{3}\right]$, and 162 $\left(M^{+}-\mathrm{COCH}_{3}-\mathrm{OC}_{2} \mathrm{H}_{5}\right)$.Diethyl (4-Acetyl-5-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)malonate (13).-A suspension of sodium hydride $(90 \mathrm{mg}, 60 \%$ dispersion in oil; washed $2 \times$ with ether) in anhydrous THF (2 ml) was added dropwise to a stirred solution of diethyl malonate ($359 \mathrm{mg}, 2.24 \mathrm{mmol}$) in anhydrous THF (2 ml) at $0^{\circ} \mathrm{C}$. After 1 h at room temperature, the mixture was treated dropwise with a solution of the diastereoisomeric mixture of compounds (7a and b) ($300 \mathrm{mg}, 1.12 \mathrm{mmol}$) in anhydrous THF (3 ml). After being stirred for 2 h , the mixture was neutralized with aqueous acetic acid, and was extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure. The residue was chromatographed on silica gel with CHCl_{3}-acetone ($50: 1$) as eluant to give compound (13) as an oil ($241 \mathrm{mg}, 59 \%$) (Found: $M^{+}, 364.1105 . \mathrm{C}_{1} 7 \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $M, 364.1093$); $v_{\text {max. }}$ (film) $1730\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$, and $1675 \mathrm{~cm}^{-1}(\mathrm{COMe}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.24$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}$), $1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 4.22$ (2 $\left.\mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.98(1$ $\mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and $7.20-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 364\left(M^{+}\right)$and 322 $\left[\left(M^{+}+1\right)-\mathrm{COCH}_{3}\right]$.

3-Acetyl-2-phenyl-5-phenylthio-2,3-dihydro-1,3,4-thiadiazole (14).-A suspension of sodium hydride ($60 \mathrm{mg}, 60 \%$ dispersion in oil; washed $2 \times$ with ether) in anhydrous THF (5 ml) was added dropwise to a stirred solution of thiophenol $(165 \mathrm{mg}, 1.5$ mmol) in anhydrous THF (5 ml) at $0^{\circ} \mathrm{C}$. After 1 h at room temperature, the mixture was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise with a solution of the diastereoisomeric mixture of compounds ($7 \mathbf{a}$ and \mathbf{b}) $(200 \mathrm{mg}, 0.75 \mathrm{mmol})$ in anhydrous THF (5 ml). After being stirred for 10 min , the mixture was neutralized with aqueous acetic acid and was extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{ml})$. The combined extracts were washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated under reduced pressure. The residue was chromatographed on silica gel with CHCl_{3}-acetone ($50: 1$) as eluant to give a solid which was crystallized from ethanol to afford compound (14) (201 mg , 86%), m.p. $101-102^{\circ} \mathrm{C}$ (Found: C, 61.2; H, 4.4; N, 8.9. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}$ requires $\mathrm{C}, 61.1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 8.9 \%$); $\mathrm{v}_{\text {max }}(\mathrm{KBr})$ $1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 6.93(1 \mathrm{H}, \mathrm{s}$, 2-H), 7.26 ($5 \mathrm{H}, \mathrm{s}, 2-\mathrm{Ph}$), and $7.30-7.70(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$; $m / z 314$ $\left(M^{+}\right)$and $272\left[\left(M^{+}+1\right)-\mathrm{COCH}_{3}\right]$.

Structure Determinations of Compounds (7a) and (8b) by XRay Diffraction.-Crystals of both compounds (7a) and (8b)
were grown from ethyl acetate solution. The crystals of compound (7a), dimensions $0.5 \times 0.5 \times 0.3 \mathrm{~mm}$, and of (8b) $0.25 \times 0.6 \mathrm{~mm}$, were mounted on a Rigaku four-circle diffractometer. The intensity data for reflections with $2<2 \theta<50^{\circ}$ were collected using graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation ($\lambda 0.7107 \AA$), with ω (7a) and $2 \theta / \omega(8 \mathbf{b})$ scan modes. The data were corrected for Lorentz and polarization factors and background effects, but not for absorption. The independent reflections, $3383(F>6 \sigma F)$ for (7a) and $2075(F>\sigma F)$ for (8 bb), were used in all calculations.

Crystal data. (a) ($2 S^{*}$)-3-Acetyl-5-[($\left.R^{*}\right)$-methylsulphinyl]-2-phenyl-2,3-dihydro-1,3,4-thiadiazole (7a); $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, $M=268.348$, monoclinic, $a=10.472(3), b=14.170(4), c=$ $35.038(8) \AA, \beta=95.30(2)^{\circ}, V=5177.3(22) \AA^{3}, Z=16, D_{\mathrm{c}}=$ $1.377 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2240, \mu=4.0 \mathrm{~cm}^{-1}$, space group $C 2 / c$.
(b) $\left(1 R^{*}, 2 S^{*}\right)$-3-Acetyl-5-[($\left.S^{*}\right)$-methylsulphinyl]-2-phenyl-2,3-dihydro-1,3,4-thiadiazole 1-oxide (8b); $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$, $M=$ 284.347, orthorhombic, $a=17.141(2), \quad b=19.371(3)$, $c=7.721(1) \AA, V=2563.5(6) \AA^{3}, Z=8, D_{\mathrm{C}}=1.473 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1184, \mu=4.2 \mathrm{~cm}^{-1}$, space group Pbca. The structures of the two compounds were solved by direct methods using the MULTAN programs ${ }^{9}$ and were refined by blockdiagonal least-squares calculations with anistropic temperature factors for non-hydrogen atoms.

All hydrogen atoms were located from difference maps. Subsequent refinement was reached at $R 0.042, R_{\mathrm{w}}$ (w 1.0) 0.041 for compound (7a), and $R 0.044, R_{\mathrm{w}}$ (w 1.0) 0.041 for compound (8b). Then the hydrogen atoms were treated as isotropic. Atomic scattering factors used were taken from reference 10.

All crystallographic calculations were performed at the Data Processing Center in Kyoto University (MULTAN package), and on the PANAFACOM U-1400 computer in Tokushima Bunri University (X-STANP package). The anisotropic thermal parameters, the hydrogen co-ordinates and isotropic thermal parameters, and bond lengths involving hydrogen atoms have been deposited as a Supplementary Publication [SUP No. 56563 (5 pp.$)] . \dagger$

Acknowledgements

We thank Mrs. M. Ohe for elemental analyses, Mr. K. Kida for n.m.r. spectra, and Mrs. Y. Yoshioka for mass spectra. This work was supported in part by a grant from the Ministry of Education, Science and Culture, Japan.
† For details of the Supplementary Publications Scheme, see Instructions for Authors (1986), in J. Chem. Soc., Perkin Trans. 1, 1986, issue 1. Structure factors are available from the editorial office on request.

References

1 S. Kubota, K. Toyooka, J. Ikeda, N. Yamamoto, and M. Shibuya, J. Chem. Soc., Perkin Trans. 1, 1983, 967.
2 S. Kubota, K. Toyooka, H. K. Misra, M. Kawano, and M. Shibuya, J. Chem. Soc., Perkin Trans. 1, 1983, 2957.

3 B. F. Bonini, G. Maccagnani, L. Thijs, and B. Zwanenburg, Tetrahedron Lett., 1973, 3569.
4 B. F. Bonini, G. Maccagnani, G. Mazzanti, L. Thijs, G. E. Veenstra, and B. Zwanenburg, J. Chem. Soc., Perkin Trans. 1, 1978, 1218.
5 S. Kubota, K. Toyooka, N. Yamamoto, M. Shibuya, and M. Kido, J. Chem. Soc., Chem. Commun., 1982, 901.
6 C. R. Johnson and D. McCants, Jr., J. Am. Chem. Soc., 1965, 87, 1109.
7 W. O. Siegl and C. R. Johnson, J. Org. Chem., 1970, 35, 3657.
8 T. Nishio and Y. Omote, Synthesis, 1980, 390; N. Frukawa, S. Ogawa, T. Kawai, and S. Oae, Tetrahedron Lett., 1983, 24, 3243.

9 G. Germain, P. Main, and M. M. Woolfson, Acta Crystallogr., Ser. A, 1971, 27, 368.
10 'International Tables for X-ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: + 2,3-Dihydrothiadiazole

